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In this paper, we present the theoretical study of the crystal
and electron structure of an intercalated compound of graphite
=the graphite mono6uoride MCFNn . The latter is widely used as
a lubricant under extremely high temperatures and high vacuum,
and as a successful cathodic depolarizer in batteries with high
energy density. The layered structure of the graphite mono6uor-
ide has been con5rmed, but statistical distributions of the indi-
vidual layers are possible. This fact helps in understanding the
problems linked to an experimental determination of the struc-
ture of this material. Small interlayer dissociation energies show
that the bonding between the individual layers is mainly due to
the weak interlayer electrostatic forces, which explains the excel-
lent lubricant properties of this material. Band structure calcu-
lations reveal that, whereas some layer arrangements of the bulk
material lead to insulating properties, others have a conductive
character. This fact explains the weak overall conductive proper-
ties of synthetic graphite mono6uoride. ( 2000 Academic Press

Key Words: intercalated graphite; graphite mono6uoride; geo-
metric structure; band structure; electric conductivity.

INTRODUCTION

Even though the discovery of intercalation of graphite
dates to the 1940s (1}4), and the properties of the corre-
sponding synthetic compounds and explanation of the un-
derlying reactions have been studied for few decades later,
there are, yet, several questions to be answered. Intercalated
compounds of graphite are formed by the penetration of
atoms within the lamellar structure of graphite without
destruction of the host's layered bonding network (5). The
graphite sheets may be viewed as huge aromatic macro-
molecules bonded together by weak intermolecular bonds.
The bonding between carbon atoms in the in"nite six-mem-
ber aromatic sheets involves p-sp2 hybridized orbitals (6).
1To whom correspondence should be addressed.
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The remaining electrons (one per carbon) enter the de-
localized orbitals of the n-p

z
symmetry, which causes an

aromatic character of the sheets and, in addition, these
electrons share the bonding between the odd sheets. These
n-electrons can give rise to bonds with #uorine atoms upon
intercalation. Formation of these bonds may lead to cha-
nges of the bonding character of original graphite, its elec-
tron structure, and its properties.

Fluorination of graphite leads (1, 2, 4, 7}9) to the forma-
tion of a series of materials composed of MCF

x
N
n

units
(x"0.2}1.2), sometimes referred to as &&graphite #uorides.''
The ionic or semi-ionic MCF

x
N
n
are prepared at an ambient

temperature in the presence of an acidic #uoride such as HF.
The electrical conductivity is increased by one order of
magnitude at the early stage of intercalation, and then it is
substantially decreased with a progress in the #uorine inter-
calation. Based on its conductivity properties, the two
aforementioned types of graphite #uorides are divided into
two di!erent groups: those with covalent bonds and those
with ionic bonds. Within the huge variety of the graphite
#uorides the stoichiometric compounds MCFN

n
, MC

2
FN

n
, and

MC
4
FN

n
are of special interest. The most stable is MCFN

n
, i.e.,

the &&graphite mono#uoride.'' Graphite mono#uoride is an
excellent lubricant under extremely high temperatures and
high vacuum (10}13), and it is also a quite successful cath-
odic depolarizer in batteries with high energy density
(14}17).

Structure of the layered graphite mono#uoride is derived
from graphite by insertion of covalently bonded #uorine
atoms above and below each hexagon in each layer (9, 10,
18}20). By forming these C}F covalent bonds with the
carbon atoms, #uorine atoms disrupt the aromatic network
and form a carbon skeleton in which each carbon is bound
by four covalent bonds with nonequivalent sp3 hybridiza-
tion. The destruction of the n-aromatic carbon skeleton
generates only slightly conducting (21) graphite derivatives
in which single carbon sheets are buckled rather than planar.
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The determination of the structure of graphite mono-
#uoride is connected with great problems (9), due to di$cul-
ties in growing a single crystal of a su$cient size. Without
doubt, the carbon layers in graphite mono#uoride are
puckered. The RuK dor! 's structure (3, 4) assumed an in"nite
array of trans-linked cyclohexane chairs. An in"nite array of
cis-trans-linked cyclohexane boats is another possible con-
formation. Based on X-ray powder di!raction studies
(9, 22, 23), the chair structure in a hexagonal crystal lattice
(P6

3
mc symmetry group) was predicted. In contrast, studies

of NMR second moment measurements (24, 25) indicate
a boat structure, which results in an orthorhombic crystal
lattice (Pmm2 symmetry group). Both these conformations
correspond to approximately tetrahedral coordinated sp3

hybridized carbon atoms.
In the case of chair conformation of the graphite mono-
#uoride, various types of the arrangement of individual
layers are possible. In view of the aforementioned facts, even
the determination of the mutual arrangements of individual
layers using X-ray di!raction data is an overwhelming
problem. The aim of the present paper is to contribute in
clarifying some of the above-mentioned problems connected
with the structure and properties of graphite mono#uoride
using theoretical considerations and numerical calculations.
To the best of our knowledge, there was only one theoretical
study of the graphite mono#uoride published in the past (6),
leaving some of the problems outlined above open for fur-
ther discussion.

METHOD OF CALCULATION

The Cluster Crystal Orbital (26, 27) method, presented in
our previous papers, was applied in all our calculations.
Within this method, extremely large "nite clusters contain-
ing tens of thousands of atoms are considered. This leads to
inclusion of the long-range interactions, which, in general,
have an important in#uence on the electron properties of
a solid state system. In this method, the modulo-periodic
boundary conditions ensure the periodicity of the wave
functions, eliminate the so-called boundary e!ects (the fact
that bonds on the boundaries of a given cluster are un-
saturated), and allow the use of transformation to Bloch
orbital basis. Calculation of the electron density based on
several thousands points of the "rst Brillouin zone gives the
values of the density matrix close to its bulk limit values.
These are further used for band structure calculations.

Finite cluster is built-up by translational replication of
the elementary unit cell along the respective lattice vector
directions a

i
(i"1, 2, 3) N

i
times. Then, N"N

1
N

2
N

3
is the

total number of unit cells considered in the cluster. The idea
behind the cyclic cluster approach is to impose the same
surroundings to all unit cells of the cluster. The interactions
of the central unit cell are imposed on the rest of the cells. By
virtue of this, each unit cell of the cluster &&feels'' such an
environment as if it was in the center of the cluster. For
a "nite cluster of size N, adopting the following identity
imposes a &&ring periodicity''

R#R@"
3
+
i/1
Gni#n@

i
!N

i
. intA

2(n#n@
i

N
i
BH a

i
. [1]

For a cluster constructed in this way, the translation sym-
metry is guaranteed, and for any one-particle (hK ) and two-
particle (gL ) operator the translation periodicity (Born}Kar-
man periodic conditions) within the considered cluster

SpR#R@ DhK DqR@T"SpR DhK DqOT"hRO

pq
[2]

SpR
1
#R@qR

2
#R@ DgL DrR@ sR

3
#R@ T"SpR

1qR
2 DgL D rOsR

3T [3]

must be ful"lled for all lattice translations R. Due to the
partial ZDO (zero di!erential overlap) approximation in the
INDO method (28), the requirements of Eqs. [2] and [3] are
automatically ful"lled for all necessary integrals. Therefore,
the transformation to a Bloch orbital basis is ambiguously
given by the "nite summation

Fkk@

pq
"Fkk

pq
dkk@"

N
+
R

Fkk

pq
exp (ik.R), [4]

and, consequently, the Fock matrix is factorized into
N blocks of the size M]M, with M being the number of
atomic orbitals in the elementary unit cell. The cluster
choice determines exactly all the Nk"(N

1
N

2
N

3
#1)/2 in-

dependent values of the wave vector k. As demonstrated by
our results, the procedures described above result in rapid
convergence to the in"nite bulk limit. In our calculations,
we used the QR-INDO/1 (quasi-relativistic intermediate
neglect of di!erential overlap) method (29, 30), explicitly
considering only the valence electrons of atoms. The matrix
elements of the Hartree}Fock operator in this treatment are
de"ned as

FRO

pq
"hRO

pq
#

N
+

R
1
,R

2(R
3
"R

1
!R

2
)

cell

+
r, s

PR
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2T

!SpRrR
1 DgL DqR

2sOT) [5]

PRO

pq
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N
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Pk

pq
exp (ik.R) [6]

Pk

pq
"

occ

+
m

(ck

pm
)*ck

qm
, [7]

where PRO

pq
and Pk

pq
are elements of the density matrix. With

increasing N, the bulk limit can be reached. This limit can,
as shown in our recent study (26) be accomplished in



FIG. 1. Two possible conformations of graphite mono#uoride: (a) the
chair conformation*hexagonal unit cell (symmetry group P6

3
mc). (b) the

boat conformation*orthorhombic unit cell (symmetry group Pmm2).
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a rather short time. Since for the converged results the
density matrix can be treated as one corresponding to the
bulk, a posteriori calculations for characteristic paths within
the "rst Brillouin zone are fully justi"ed.

The above-mentioned method with QR-INDO/1 Hamil-
tonian (29, 30) has been implemented within the computer
code SOLID98 (33), which has been applied in all calcu-
lations presented in this paper.

RESULTS AND DISCUSSION

a. Structures

The main task in this study was (i) to determine which of
the possible single-layer conformations (trans-cyclohexane
chairs or cis-trans-linked cyclohexane boats) (see Fig. 1) is
more stable and (ii) to determine how these layers can be
mutually arranged.

While for the boat conformation one can suggest only
a single relevant layer sequence (i.e., fully covered), for the
chair conformation there exists several proposals by the
crystallographers:

(a) covered con"guration with AAA type of sequences;
(b) the con"guration in which each second layer is shif-

ted, i.e., ABAB type of sequences;
(c) the con"guration in which three neighboring layers

are mutually shifted, i.e., ABCABC type of sequences;
(d) the covered con"guration with mirror plane of sym-

metry, i.e., AA@/A@A type of sequences;
(e) the con"guration with mirror plane of symmetry and

with each second layer mutually shifted, i.e., AB/B@A@ type of
sequences.

Simultaneous optimization of 4 to 7 geometric para-
meters (see Table 1) was necessary for each sequence. Calcu-
lations were performed for about 100 points around the
minima for all geometry arrangements. The general form of
quadratic energy hypersurface was used, and optimization
was performed by means of the nonlinear simulated anneal-
ing method (31, 32) followed by the conjugate gradient
optimization method (31). The results of optimization are
summarized in Tables 1 and 2.

Comparison of the chair and boat structures (Table 1) in
the covered (AAA) con"gurations shows that the chair
structure is more stable (by about 1 eV) (Table 2), which is in
good agreement with recent DFT results for the covered
structure (6). In addition, symmetry analysis shows that the
transition between the two conformations is a symmetry
forbidden reaction. Other stacking sequences (b}e) were not
studied in (6).

Since, as mentioned in the Introduction, for the (appar-
ently de"nitely more stable) chair conformation various
geometric arrangements of the layers are possible (i.e., a}e),
we decided to investigate all of them. Complete geometries
are collected in Table 1. As follows from Table 2 the energies
of all con"gurations are very close (within about 0.5 eV).
Despite the fact that the ABCABC and AA@/A@A are the
most stable, it may be concluded that, in the real structure of
graphite mono#uoride, a statistical distribution of various
types of stacking sequences is feasible. In such arrangements
the maximal entropy contribution leads to the minimum
Gibbs energy of the system. This behavior is similar to that
in graphite, where three types of statistically distributed
sequences (AAA, ABAB, and ABCABC) have been found.
Since the graphite mono#uoride is usually prepared by
a straightforward #uorination of graphite, statistical distri-
butions of various stacking sequences may result. The stat-
istical distribution of various stacking sequences helps to
understand the problems linked to the experimental deter-
mination of the structure of graphite mono#uoride.

b. Dissociation Energies

To explain the very interesting lubricant properties of the
graphite mono#uoride, the interlayer dissociation curves
were calculated (see Fig. 2). Results of the calculations show
that individual layers are mutually bonded by the weak
electrostatic forces only (the dissociation energies does not
exceed 0.5 eV), which explains the excellent lubricant prop-
erties of these types of solid state materials. Crystal orbital
overlap populations con"rmed the small interlayer bond
energies.

c. Electronic Structure and Conductivity

The results of calculations show that optimized C}F
bonds in graphite mono#uoride are strong covalent bonds:
the C}F distances are in the 1.41}1.45]10~10 m range for
various stacking sequences. The net charges on the carbon
atoms (q"0.11P0.14) and #uorine atoms (q"!0.11P



TABLE 1
Optimized Coordinates and Lattice Parameters for Various Stacking Sequences of Graphite Mono6uoride (Values Are in 10210 m)

Cartesian coordinates

Sequence Atom x y z Lattice parameters

AAA C
1 (1/J3)a 0 !zc a"2.536; c"4.481;

(hexagonal) C
2 (1/2J3)a !a/2 #zc z"0.0516; u"0.3735;

F
1 (1/J3)a 0 !uc

F
2 (1J3)a !a/2 #uc

AAA C
1

ax 1/2b #zc a"4.369; b"2.5146;
(orthorhombic) C

2
(1/2!x)a 0 !zc c"4.586; z"0.06612;

C
3

(1/2#x)a 0 !zc u"0.3687; x"0.1760;
C

4
!xa 1/2b #zc w"0.02961;

F
1

(!1/4!w)a 1/2b #uc
F

2
(1/4#w)a 0 !uc

F
3

(3/4!w)a 0 !uc
F

4
(3/4#w)a 1/2b #uc

ABAB C
1

0 0 !zc a"2.5331; c"8.870;
(hexagonal) C

2 (1/J3)a 0 #zc z"0.02580; u"0.1880;
C

3 (1/J3)a 0 (1/2#z)c
C

4 (1/2J3)a !1/2a (1/2!z)c
F

1
0 0 !uc

F
2 (1/J3)a 0 #uc

F
3 (1/J3)a 0 (1/2#u)c

F
4 (1/2J3)a !1/2a (1/2!u)c

ABCABC C
1

0 0 !zc a"2.5406; c"14.2430;
(hexagonal) C

2 (1J3)a 0 #zc z"0.014063;
C

3 (1J3)a 0 (1/3!z)c u"0.11913;
C

4 (1/2J3)a !1/2a (1/3#z)c
C

5
0 0 (2/3#z)c

C
6 (1/2J3)a !1/2a (2/3!z)c

F
1

0 0 !uc
F

2 (1/J3)a 0 #uc
F

3 (1/J3)a 0 (1/3!u)c
F

4 (1/2J3)a !1/2a (1/3#u)c
F

5
0 0 (2/3#u)c

F
6 (1/2J3)a !1/2a (2/3!u)c

AA@/A@A C
1

0 0 !zc a"2.5445; c"9.4871;
(hexagonal) C

2 (1/J3)a 0 #zc z"0.021433;
C

3 (1/J3)a 0 (1/2!z)c u"0.17748;
C

4
0 0 (1/2#z)c

F
1

0 0 !uc
F

2 (1/J3)a 0 #uc
F

3 (1/J3)a 0 (1/2!u)c
F

4
0 0 (1/2#u)c

AB/B@A@ C
1

0 0 !zc a"2.5401; c"18.995;
(hexagonal) C

2 (1/J3)a 0 #zc z"0.01147; u"0.08815;
C

3
0 0 (1/4!z)c

C
4 (1/2J3)a !1/2a (1/4#z)c

C
5 (1/2J3)a !1/2a (1/2!z)c

C
6

0 0 (1/2#z)c
C

7 (1/J3)a 0 (3/4!z)c
C

8
0 0 (3/4#z)c

F
1

0 0 !uc
F

2 (1/J3)a 0 #uc
F

3
0 0 (1/4!u)c

F
4 (1/2J3)a !1/2a (1/4#u)c

F
5 (1/2J3)a !1/2a (1/2!u)c

F
6 (1/2J3)a !1/2a (2/3!u)c

F
7

(1/J3)a 0 (3/4!u)c
F

8
0 0 (3/4#u)c
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TABLE 2
Relative Energies per C}F Unit for Various Stacking Sequences

of Graphite Mono6uoride

*E/per C}F unit Band gap Number of atoms
Sequence [eV]a [eV] in the cluster

AAA (boat conformation) 1.67 6.51 23 400
AAA (chair conformation) 0.69 6.55 43 740
ABAB (chair conformation) 0.68 6.47 27 000
ABCABC (chair
conformation) 0.00 * 40 500
AA@/A@A (chair
conformation) 0.01 * 27 000
AB/B@A@ (chair
conformation) 0.43 5.84 38 148

aRelative energies are presented with respect to the most stable ABCABC
conformation.
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!0.14) show only a small polar character of these bonds.
The optimized C}C bonds in neighboring carbon atoms are
in the 1.53P1.58]10~10 m range. From these results it
may be concluded that the properties of individual C}C and
FIG. 2. Interlayer dissociation curves for variou
C}F bonds are in the range of analogous bonds in saturated
#uorinated hydrocarbons.

The optimized structures for all possible stacking se-
quences (see Table 1) were used for band structure calcu-
lations of graphite mono#uoride. The results of the
calculations are presented in Fig. 3. It is seen that three
types of sequences (AAA, ABAB, and AB@/B@A@ sequences)
have insulating properties, while the other two (AA@/A/A
and ABCABC sequences) are of semimetallic character. This
follows from the overlap between valence and conductive
bands. The latter result explains the weak conductive prop-
erties of real graphite mono#uoride (34}37).

More on the nature of valence and conductive bands can
be seen from Fig. 4, where projected density of states in the
vicinity of the Fermi level is plotted. For this "gure we have
chosen one of the insulating systems (AAA sequence) and
compared it with two conductors (AB/B@A@ and ABCABC
sequences).

The p
x
and p

y
orbitals of carbon and p

z
orbitals of #uorine

are dominant at the top of the valence bands for the insula-
tor. In this case, the nonzero densities of the valence and
conductive bands are far from the Fermi level.
s stacking sequences of graphite mono#uoride.



FIG. 3. Energy band structure along the main symmetry directions of the "rst Brillouin zone for various stacking sequences of graphite mono#uoride.
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For conductive sequences, the dominating contribution
to the valence band around the Fermi level are due to
p
z

orbitals (perpendicular to the hexagonal layers) on the
carbon and also #uorine atoms. It is clearly seen that the
density of states for p

z
orbitals continuously passes through

the Fermi level, hence, conductive bands can be easily popu-
lated as a result of weak external potentials or for temper-
atures higher than 0 K.

The semimetallic character disappeared altogether when
a single layer was considered. In this case, the gap between
the valence and conductive bands was about 8 eV, which is
even higher than for all three-dimensional structures. This,
undoubtedly, con"rms that interlayer interactions are re-
sponsible for the conductive properties of the ABCABC and
AA@/A@A con"gurations of graphite mono#uoride.

CONCLUSIONS

The results of the calculations of geometric and electronic
properties of the graphite mono#uoride can be summarized
as follows:
f Intercalated #uorine atoms form strong covalent and
weakly polarized bonds with carbon atoms in the single
layer, as expected.

f The chair conformation of individual layers is more
stable as compared to the boat conformation of C

6
hexagon

rings. The transition between these two conformations is
symmetry forbidden reaction.

f Various stacking sequences of graphite mono#uoride
are very close on the energy scale, which suggests that in the
real structure of graphite mono#uoride, statistical distribu-
tion of various types of sequences can occur. In such a type
of arrangement the maximal entropy contribution leads to
the minimum of the Gibbs energy.

f Interlayer bond energies are very small, which corres-
ponds to excellent lubricant properties of this type of material.

f The band structure calculations showed that the
layered graphite mono#uoride has insulating properties for
some of the stacking sequences, while other stacking se-
quences have a semimetallic character. These results explain
weak overall conductive properties of the real graphite
mono#uoride.



FIG. 4. Density of states around the Fermi level for nonconductive (AAA) and conductive (AA@/A@A and ABCABC) type of sequences.
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